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ABSTRACT

Let

Pn(z) Zn +a 2 zn 2 +...+ an I (zzj)

be a polynomial in C~z] having the origin as the center of gravity of its
zeros z . We call 1

R(Pn)-(. Iz.I2/
1 A-jrnstion For 1

th. quadratic radius of Pn (Z). We also consider the derivative (°'[

n-1 oti D:of- e d l
P1(z) nz n- 1 + (n-2)a2zn-

3 +...+ an-i n (Z-Wk)' . L1Ca t.....

* ~and its quadratic radius 1y
Distribution/-

n-i
1 2V)/2 Availability CodesR(Pn-) -(-! ~ 1

n -Avail and/or
lDist ISpecial

The main purpose of this note is to state

1*we have thie inequality r/

n -n-in

with the equality sign if and only all the zeros zj .2o Pn(z) are real, or c,

equivalently, all zj are on a straight line of C.

We prove (1) for n - 3. Also for binomial polynomials of the form
Pn(z) - 5 n + -akz (2 < k < n). We prove directly other consequences of
Conjecture 1.
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j SIGNIFICANCE AND EXPLANATION

-)The main purpose of this note is to state a conjecture which may be p

regarded as an analogue of Rolle's theorem for arbitrary polynomials Pi(z)

with real or complex coefficient, having the origin z = 0 as the centroid of

the zeros of PW(z). How the zeros zj of Pn(Z) crowd around their

centroid is measured by the quadratic mean

R(Pn) f (n I 1 2"--

np
of their distances from their centroid 0. If

n-1

is the similar quantity for the derivative PA(z) having the zeros

Wl, .""'Wn- I 'it is conjectured that

"-- R,(PI) <, - R(P n  ,."n = n---.-

with the equality sign if and only if the zeros zj are all real, or

equivalently, all zj are on a straight line.

This is proved if n = 3 and also for binomial polynomials. - -

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

. .. .



1. J. Schoenberg

Let cI.c 2 ,...,c n be n non-negative reals. We call the quadratic

mean of the cj the quantity h(c) defined by

(1) c(cj) n

Moreover, let

(2) Pn(z) z n + a 2zn-
2 

+...+ an # (n 2)

be a polynomial with real or complex coefficient with a1  0. If

n
(3) PnlX) - (Z-Xj)

1

exhibits ite zeros aj, then clearly

(4) I + z2 z. 0

which implies that in the complex plane the origin 0 is the center of gravity of the

zi. We define the quadratic mean radius of Pn by 12- 
-

(5) R(Pn) "M(1,zJI)- n 2/2

We are here concerned with the effect of the operation of differentiation of Pn z)

on its R(Pn), which we also simply call the quadratic radius of Pn" Concerning this

effect we have a conjecture. We consider the derivative

n-n
(6) Pn(z) - nz

n 1 
+ (n+2)+2 z An.- n n (z-wk)

having the zeros wk, and we wish to compare the quadratic radii R(Pn) and R(PA),

looking for some analogue of Rolle's theorem.

The main purpose of the present note is to state

I. The quadratic radii R(Pn) and R(PA) satisfy the inequality

(7) R(PA) I< n- R(p)

with the equality sign if and only if all the zeros zI of P(z) are real or,:.-.

equivalently, all zeros zi are on a straight line of C.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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A trivial example

,(,n_,) 1 (nz
n - l )  

0

The necessity of the equation

()1 1n w _._,

nI k 1 n-i 1n 1 )

for the reality of all zeros of Pn(z) is quite trivial, and this is the original source _

of the conjecture: As in this case the zj and wk are all real, we can remove in (8)

all the absolute value signs. Moreover,

(9) w I + w2 + wn-1  0

From (4), (9), (2), and (6) we have

) -2 )- " "2a 2
1 - j<j'

* ~(10)n-n2
2n-2 •D

w- -2 ) Wkk"---- 2a2 "

I k<k'

and eliminating a2  between these equations, we obtain

ni '2_n-2 1 2(11) - I
1 Wk n j

which is equivalent with (8), as the zj and wk are all real.

In the sequel we establish Conjecture I for the case where n - 3, and we derive same

consequences of Conjecture 1, which are of course, only conjectured. In 12 we establish

Conjecture I for binomial polynomials.

Fred W. Sauer, of the MRC Computing Staff, has verified the strict inequality (7) for

some 25 numerically given complex Pn(z), and in the last J5 we record three of his

examples. For this I am very much obliged to Fred. I am also much impressed by the speed S

and precision of the Jenkins-Traub algorithm used in solving the equations Pn(z) 0

and P =t,) 0.

-2-
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1. ~ Let

(1.1) T (zl,z 2  z3 )

be the triangle of the complex plane having the zeros of P3 (z) as vertices. By our

assumption (4) the centroid of T is in the origin 0. We are now using the following

theorem of van den Berg ((1], or [3, Chap. 71).

I (van den Berg). Let E be the Steiner ellipse of the triangle T. This is

the ellipse which is inscribed in T such that E is tangent to the sides of T in their

midpoints. Then the zeros of P'3 (z) are identical with the foci w1  and w2  of the

ellipse E. (See Fig. I).

ZS

'-3 _--

". W "

Fig.l

with z x +iY and j xj + iyj we place T u E so that the major axis v•v2

of E is on the real x-axis, its center being at the origin. Let a and b be the semi-

axes of E and a2 b c =2w2 . We now subject the plane to the aff ins

x(t) x
At

which contracts r toward the X-axis. As the semi-axes of E t A are a and bt,

-3-
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we find that the foci of B(t), which we denote by w 1(t) and w2 (t) ,  are

w 1 (t) a-b2t2 +V, as t 0

and similarly w2(t) + -v2. This shows, by continuity as t + +0, that 3(z-vll(l-v 2) is

*the derivative of the real cubic

(1.2) (z-x 1 )(z-x 2 )(z-x 3 ) .

By (10) we have (v,2+v2)/2 - (x,+x2+x2)/6. and therefore

3i 3
1 1j2 1 2 1 2 2 22+ 2 1w12 )(1.3) 1 1 6"1 (v' (V ) a T Il > "1 ""

A comparison of the extreme terms of (1.3) gives the desired inequality (7) which, for

n 3, is

(1.4) R(P) < yR(P 3 )

Finally, the equality sign between the extreme terms of (1.3) implies that El 12 - 2x2 ,

and therefore zj = xj(Ji1,2,3), so that the zeros of P3 (z) are real. S

2. v=LILblD a There is a simple case when the

quadratic radii R(Pn) and R(PA) can both be evaluated very simply explicitly. This is

the case when the polynomial (1) is binomial, i.e. of the form pn(z n + kn-k with.

2 k ( n. Without loss of generality we may assume that ak= 1, hence ...

(2.1) Pn(Z) = zn + zn-k , (2 < k < n) ,

whence

PA(z) -nzn-I + (n-k )zn-k-i

we find for Pn(Z) - znk(zk + 1) and, by (5), that

(2.2) (R(Pn))-2

Likewise pI(z) - nzn-k'l(zk + (n-k)/n), and therefore, by (5), that
(2.3) 2, k (-.k)2/k

The desired inequality (7) now easily reduces to proving

IMA 1. We have the inequality

(2.4) (n - 2 )k > nk-2
(n - k)

2  
if 2 < k = n

-4--
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Proofs This is trivial if k - 2, or if k - n, and we may therefore assume that

(2.5) 2 < k < n

and prove

-."a 1'. We have the inequality

(2.6) (n - 2 )k > nk'2(n - k)
2  

if 2 < k < n •

This we will derive from the more general

2. Let the reals x1l,...,xk, not all equal to each other, have the mean

(2.7) a k ". xj

then
k 5

(2.8) (x - a)
k 

> H ix xj) if x > xj (j

Proof of Lemma 2. Taking logarithms, (2.8) is equivalent to

k
(2.9) log(x- a) > . log(x- xJ) if x > max xj

From (2.7) we have

x-a- ) Cx- axj)

and (2.9) amounts to

1k k
(2.10) log(.! (x x > log(x x

k 1

which follows from the strict concavity of log x in 0 < x < g. Indeed, for any strictly

concave function f(x) in (0.-), and for positive quantities

pj - x - xj, not all equal to each other,

we have the well known inequality -

k 1k

For f(x) = log x this amounts to (2.10).

Proof of Lemma 1V. We specialize Lemma 2 by choosing

x x k...X.. 2 O'Xk-..lkk, and x-n

For the mean value (2.7) we find

k
a - j - 2k -2

-5-
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while

II x -xj) n k-2  (x x Xk-1)(x -xk) =(n k) )2

Now (2.8) goes over into the desired inequality (2.6).

3- i ~S !I~A 22 *x2 D ML2 We start from POW) and

integrate it successively with arbitrary constants of integration, obtaining a so-called

Appell sequence of polynomials

(3.) ..(z (z, + (,)c n-i + (n)c 2 zn-2 C), (n =1,2...)
= I 1 22 ** n

Here

(3.2) (c n), (co 1 n 12..

*is an arbitrarily prescribed sequence of real or complex constants. Evidently

(3.3) PA(z) -Pn-i(z)I (n -1,2...)

* Conversely, (3.3) and p0 (z) I imply (3.1).

134 n (z Z I ,_.n))0
n(Z = j.1fl z

describe the zeros of these polynomials. without loss of generality we may assume that

(3.5) cl 0

which implies that
n

(3.6) ~ ~l , (n =1,2,...)
j-1

Because of the relation (3.3) we wish now to apply Conjecture 1, hence the inequality

*(7), to any two consecutive pair of polynomials of the sequence (3.1). Of course, the

results will only be conjectured, as Conjecture 1 has not been established. Since (7) may

be written as

1 ni k2 Cn-2 iz 2
n-i I w n-I

* or

1 n-i 2 1 n

? Iv! 1.312
(n-i)(n-2) { k nn1

-6-



7 7

we obtain for the pair Pk (z), Pk+ 1(z), with the notations of (3.4), the inequality

k +
1WIc 2 1 Z

k(k-1) (k tz.

By iterating this recurrent inequality we obtain

1____ (k)12 <1 ' (n)12 for n > > 2

This we may write in the final form

(3.7) (RCPn))2 > --I (R(Pk))2  (n-i) (n > kc > 2)

An immediate (conjectured) consequence is the

1. If the polynomials (3.1) are

(3.8) pn) W zn/ni for n 7,2,...

then clearly

(3.9) R(Pn) 0 for-all n

Let us now assume that

(3.10) Pn~z) n/nI for n -1,2....k-1 (c>2

while
kc k3(3.11) P(z W i-:-a I( 0)

then

(3.12) R(Pn) > C/n-1 where C = IJ/(k-1)'/2, for n > kc

indeed, if in (3.7) we choose for kc its value that appears in (3.11) we obtain the

lower estimate (3.12), because R(Pk)

4. A oof of =1212 if kc -. our belief in the truth of a conjecture is

strengthened if we can prove directly a consequence of the conjecture. This is immediate:

If k =2 in (3.11), then in (3.1) we have cl 0, and c2 #0. On the other hand, by

integrating P2(z) =(X
2  a c2 )/2 (n-2)-times we obtain

zn a2 zn-2 1 n 2 n(n-1) n-2
(n21+...-(z -o 2 z +...

'n~ ni 2 n-) ni2

and (10) shows that

-7-
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(4.1) (z.') a un(n-1)

This implies by (4.1), that

(R(Pn)) 2 - . (01,2 > I) (2 (n))21  bi 2 n1

or

(4.2) R(Pn) IC1 Vj n-, (n 2) .

This, however, is precisely (3.12) for k - 2.

if the zeros of all polynomials (3.1) are real, then we have an Appell sequence of the

so-called Laguerre-Polya-Schur class (for references see (3]). In this case we have the

equality sign in (4.2) for all n. An important example are the Hermits polynomials

[n/21 r n-2r
Hn(z) - nt (-1) (2z)(se 4,pg 10)

n0 rl (n-20) se 4 ag 0]

when (4.2) becomes the equation

R(Hn) 2 22~ . - -

This seems the place to mention the different behavior of the two quantities R(Pn)

* and

*(4.3) max I

Indeed, observe that we may express any Appell sequence (3.1) as

P(z) = (n) dx1 f2 dx dXn
n 1 (21) 2 (

Here

r)(r 12..)P
21

can be an arbitrarily chosen sequence of points of the complex plane. This implies that

the sequence (4.3) may grow as fast as we wish as n + -

An open question: How fast can the quadratic radius R(Pn) grow as n + -

5. L i u 2 ~ Z~1. As already mentioned Fred

verified the inequality (7) in some 25 cases. We record here three of these examples: 3

-8-
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5 5 + iz
2 + 5z -2 1.35871 1.16038 1.17668

4 Z4 - Z + z -i1.07753 .68454 .87980

4 4 + (1+2i)z
2 

-z + (l-i) 1.27456 .86366 1.04068

The last two columns illustrate the inequality (7).

lp

-9-



AS~~* =~2 ~Let

(A. 1) j X)+i'yj Wk kUk +i'vk

We rewrite Conjecture 1 replacing the inequality (7) by an obviously equivalent one

1.We have

(A.2) Iz 12 >n nI *

with the equality sign iff the zjare real, or on a straight line.

An equivalent conjecture is

2. We have

j 2 n 2
(A.3) 1j n-2 1

with the equality sign iff the zjare real, or on a straight line.

1. Conjecture 2 implies Conjecture 1. Applying Conjecture 2 in the two directions

Ox and Oy we obtain

j =n-2 k j -n-2 k

and adding them we obtain the inequality (A.2). Moreover, the equality sign in (A.2)

implies the equality in both relations (A.4), hence the zjare real or on a line.

2. Con~jecture 1 implies Conjecture 2. Indeed, by (11) fromi our Introduction we have,

using (A.1), the equation

2 n 2 2
E (x. + iy. 1;: - ( k~ + iv k

Equating the real parts of both sides

X2 Y2 n U2 n V2

j j n2 k nT-2 k

* whence

(A.5) Lx
2 

- na- u2  y2 - n EV
2  

=
j n-2 kc j n-2 kc

X denoting the common value of both sides of (A.5).

From (A.5) we obtain

* (A.6) E 1z1 n ~wI 2X

Now (A.2) shows that X > 0, and from (A.5) we see that the inequalities (A.4) hold.

Moreover, the equality sign in (A.2) shows that X = 0 in (A.5) and therefore we have

* equality in (A.3) iff the z, are real or rectilinear.

-10-
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ABSTRACT (continued)

*the quadratic radius of pn (z). We also consider the derivative

n-i n3 n-i
* P' ( = nz + (n-2)a z + .+a = J I (z-wk)

- . and its quadratic radius l:
R(P') = (..k

*The main purpose of this note is to state

Conjecture 1. We have the inequality

(1) R(P I) < A ! R(
n = n-i n

with the equality sign if and only all the zeros z. of P Wz are real, or
equiAvalently, all z. are on a straight line of C n

we prove (1) for n = 3. Also for binomial polynomials of the form
Pn(Z) = 2 n +azn-k (2 < k < n). We prove directly other consequences of
Conjecture 1.
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